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Class Numbers of the Simplest Cubic Fields 

By Lawrence C. Washington* 

To my friend and colleague Daniel Shanks on his seventieth birthday 

Abstract. Using the "simplest cubic fields" of D. Shanks, we give a modified proof and an 
extension of a result of Uchida, showing how to obtain cyclic cubic fields with class number 
divisible by n, for any n. Using 2-descents on elliptic curves, we obtain precise information on 
the 2-Sylow subgroups of the class groups of these fields. A theorem of H. Heilbronn 
associates a set of quartic fields to the class group. We show how to obtain these fields via 
these elliptic curves. 

In [10], D. Shanks discussed a family of cyclic cubic fields and showed that they 
could be regarded as the cubic analogues of the real quadratic fields Q(Va2 + 4). 
These fields had previously appeared in the work of H. Cohn [4], who used them to 
produce cubic fields of even class number. Later, they appeared in the work of K. 
Uchida [12], who showed that for each n there are infinitely many cubic fields with 
class number divisible by n. 

In the following we first give another proof of Uchida's result and extend the 
techniques to handle some new cases. In the second part of the paper we study the 
relationship between elliptic curves and the 2-part of the class group, interpreting 
and extending the work of Cohn. 

1. The Simplest Cubic Fields. Let m > 0 be an integer such that m # 3 mod 9. Let 
K be the cubic field defined by the irreducible (over Q) polynomial 

f(X) = X3 + mX2 -(M + 3)X+ 1. 
The discriminant of f(X) is D2 = (M2 + 3m + 9)2 (note that m # 3 mod 9 implies 
D # 0 mod 27). Let p be the negative root of f(X). Then 

p' = 1/(1 - p) and p"= I -l/p 
are the other two roots, so K = Q(p) is a cyclic cubic field. Note that p, p', p" are 
units; in fact, p, p' are independent, hence generate a subgroup of finite index in the 
full group of units of K. Since 

-m -2 < p < -m - 1 < 0 < p' < 1 < p" < 2, 
it follows easily that all 8 combinations of signs may be obtained from units and 
their conjugates; hence, every totally positive unit is a square and the narrow and 
wide class numbers are equal. 
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Let a = -1 + p - p2. Then a (O Q) is a root of 

g(X) = X3 + D(X + 1)2, 

which has discriminant D 2(4D - 27)2 (this is the polynomial used by Uchida). 
Write D = bc3 with b cube-free (note that D # 0 mod 27 implies that the 3-part of 
D is contained in b). The polynomial 

h(X) = c-3g(CX) = X3 + b(cX + 1)2 

has integral coefficients and discriminant b2(4D - 27)2. Since gcd(D, b(4D - 27)) 
= gcd(D, 27b) = b, we see that only primes dividing b can ramify in K/Q. But if p 
divides b and /3 is a root of h(X), then 3vp(f3) = vp(b) + 2vp(cf3 + 1). Hence 

vp(/3) > 0, so vp(cf3 + 1) = vp(1) = 0 and vp(f) = vp(b)/3 = 1/3 or 2/3. There- 
fore p ramifies in K/Q. 

If p = 3 then p is tamely ramified, so pe-l = p2 iS the exact power of p dividing 
the discriminant of K [3, p. 21]. If 3 is ramified then it is wildly ramified, so 33 

divides the discriminant, which is a square. So 81 divides the discriminant. Since 
D # 0 mod 27, we see that 81 is the exact power of 3 in the discriminant. We have 
proved the following 

PROPOSITION 1. Let m # 3 mod 9 and write m2 + 3m + 9 = bc3 with b cube-free. 
Then the discriminant of K is (6Hplb p)2, where 8 = 1 if 3 + b and 8 = 3 if 3 1 b. 

COROLLARY. If m2 + 3m + 9 is square-free, then {1, p, p2 } forms an integral basis 
for K and (-1, p, p'} generates the full group of units of K. 

Proof. The first part is immediate. The second follows, for example, from 
estimates on the regulator of a cyclic cubic field [5]. 

2. Divisibility of Class Numbers. In this section we prove a result of Uchida which 
yields, for any n, cubic fields with class number divisible by n. 

PROPOSITION 2. Let n > 2 be an integer. Let x, y E Q, and suppose 

yn = X3 + MX2-(m + 3)x + 1. 

If D is not cube-free, we also assume that the g.c.d. of the numerator of X2 - X + 1, 
the numerator of y, and c (defined above) is 1. If n # 0 mod 3 or if x E Z, then the 
principal ideal (x - p) is the nth power of an ideal of K. If x 0 Z and n 0 mod 3, 
it is the (n/3)rd power of an ideal. 

Proof. Let p be a prime ideal of K. If a is the exact power of p in the 
denominator of x - p, then V3a is the exact power of p in the denominator of y"'. 
Therefore n divides 3a. This takes care of the denominator. Now assume a, with 
a > 0, is the exact power of p dividing x - p. Let p be the rational prime below t. 

If p is ramified, then p equals its Galois conjugates, so a is the exact power of p 

dividing each of x - p' and x - p". Therefore t3a = pa exactly divides yn = 

(x - p)(x - p')(x - p"), so n divides a. Now suppose p is unramified. If p does 
not divide (x - p')(x - p"), then )a exactly divides yfn, so n divides a. So suppose 
p divides x - p' or x - p". Then p divides p - p' or p - p", hence p divides D. If 
D is cube-free, this implies that p ramifies, so we are done. In any case, from the 
fact that p' = 1/(1 - p) and p" = 1 - 1/p we find that x 1/(1 - x) or 1 - 
1/xmod . Therefore x2 - x + 1 0 O mod . Since Ix - p implies Iy y, the 
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numerators of x2 - x + 1 and y have a common factor. This contradicts our 
assumption and completes the proof. 

In order to obtain results on class numbers, we need conditions which will ensure 
that (x - p) is not, for example, the n th power of a principal ideal. The most 
effective way seems to be to consider the various values of x separately. The case 
x = -1 corresponds to the result of Uchida. 

PROPOSITION 3. Suppose (-1, y) satisfies the conditions of Proposition 2 (so 
yf = 2m + 3) and m # 0 mod 3. Assume that for each prime factor / of n there exist 
corresponding prime factors p and q of y such that 2 is an ith power nonresidue modulo 
both p and q and such that 3 is an ith power residue mod p and an ith power nonresidue 
mod q. Then the ideal ( -1 - p) is the nth power of an ideal I whose ideal class has 
order n. 

Proof. Any ply divides yf = (-1 - p)(-I - p')(-I - p"); since the three 
factors are conjugate, we may choose a prime p above p such that p -1 mod A. 

Then p' 1/2 and p" 2 mod A. Since -1 2 mod A, it follows that p splits in 
K. 

If m2 + 3m + 9 is square-free, then we know from above that the group E' 
generated by ( -1, p, p'} is the full group E of units, but in general this is not the 
case. Let 1 be a prime dividing n and suppose 1 divides [E: E']. Then there is a unit 
E such that E I= ? pa(p,)b with a, b E Z not divisible by 1. First suppose 1 is odd, so 
we may ignore the possible negative sign. We then have E -- (- l)a2-b mod P. Since 
2 is an lth power nonresidue mod p, we must have b 0 mod 1. In addition, 
()I = (ps)a(pot)b so ( =')- 2b-a mod p. Hence b - a Omodl, so a Omodl. It 
follows that [E: E'] is prime to 1. Now let 1 = 2, so -2 = ?pa(p,)b. The left side is 
totally positive, hence a and b must both be even and the positive sign must be 
used. Therefore 2 does not divide [E: E']. We have shown that [E: E'] is prime to 
n. 

Now suppose (-1 - p) = (a)' for some a and for some prime 1 dividing n. Then 

-1 - p = -a/ 

for some unit E. The above implies that we may write 

-1 - p = pa(pt)ba' 

for some a, b, and a1. Therefore 

-1 - P' =+ (P) 
a 

((aP) b(a,)I 

so 

- ?2ba(a) mod>. 

This congruence also holds mod q, where q is the prime above q with p -1 
mod q. We first treat the case where 1 is odd. The negative signs may be ignored, so 
we find that b - a + 1 -Omodl since 3 is an lth power residue modp, but 
b - a + 1 0 0 mod 1 since 3 is not an lth power residue mod q. Contradiction. Now 
suppose 1 2. Since -1 - p' < 0, we have 

-1 _p, (p)(p ) (a"1)2 
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But 

0 > -1 - pa= (p')apb (")2 

so b is even Also 

0 < -1 - p =_pa(p,) 2 

so a is odd. The above equations yield 

3- -2b-a )2modq 

so 3 is a quadratic residue mod q. Contradiction. (We also could have used the 
expression for -1 - p" to obtain -3 - 2a(-1)"(a"')2 mod >. Therefore, for 
/ = 2 we only need a prime divisor of y for which at least one of 2 and 3 is a 
quadratic nonresidue.) Since (-1 - p) # (a)' for any I dividing n, it follows that 
the ideal class of I has order n, as desired. 

COROLLARY (UCHIDA). Let y and n be positive integers with y > 1 and (y, 6) = 1. 
Assume that for each prime 1 dividing n there are corresponding primes p and q, as in 
the statement of Proposition 3. Let m = (yn - 3)/2. Then the field K determined by 
the polynomial X3 + mX2 - (m + 3)X + 1 has class number divisible by n. (Uchida 
used the polynomial X3 + D(X + 1)2 with D = (y2n + 27)/4.) 

This is just a restatement of Proposition 3. Uchida deduces from this that there 
are infinitely many cyclic cubic fields with class number divisible by n. 

It is possible to use the above techniques with values of x other than -1 and 
obtain similar results. The following is a sample: 

x = 2. This yields the same value for y and the same result as above. This should 
not be surprising since p -1 implies p" 2, so the above congruences can be 
used with p" in place of p. 

x = 1. If n is odd we obtain the point (1, -1), which does not yield any 
information, since x - p = 1 - p is a unit. 

x = 3. Choose an integer y > 1 with (y, 7) = 1. The parameter m is given by 
m = (y - 19)/6. We also assume m E Z (so, for example, we could take y 
1 mod 6). In the notation of the proof of Proposition 3, we have p 3, p' - 1/2, 

p" --2/3 mod p. We need to show that the subgroup of units E' has index prime to 
n. This index is 1 if m2 + 3m + 9 is square-free. In other cases we can impose 
conditions as in Proposition 3. For example, it suffices to assume that for each 1 
dividing n there is a divisor p of y with 3 an lth power residue and 2 an lth power 
nonresidue. We next need to show that (3 - p) # (a)' for each prime I dividing n. If 
we assume, in addition to the above assumptions on 2 and 3, that for each such 1 the 
prime p has 7 as an Ith power nonresidue and that there is also a prime q dividing y 
with 3 and 7 as Ith power residues and 2 a nonresidue, then it follows that 
(3 - p) # (a)'. We thus find, under these assumptions, that n divides the class 
number. 

x = 4. We give a numerical example which shows how the above techniques can 
be modified. Let m = 256, so X3 + mX2 - (m + 3)X + 1 = 55. Since m2 + 3m + 
9 = 66313 = 13 - 5101 is square-free, the units are generated by { -1, p, p'}. We 
only need to show that (4 - p) = (a)5. But there is only one rational prime dividing 
5 = y, so we cannot find primes p and q as before. Observe that 

(3- p)(3 - p')(3 - p") = 33 m 32( + 3) .3 + 1 = 1555 = 5 * 311 
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(the main point is that 311 1 mod 5, so there are 5th power nonresidues). We may 
therefore choose a prime p dividing 311 with p 3, p' - 1/2, p" 2/3 mod p. 
Suppose 

4 - p (= p)(p)ba 

Then, taking the three conjugates of this equation and then reducing mod >, we 
obtain 

1 = 3a2-ba, 9/2 2a(2/3) b 5, 10/3 = (2/3) 3by 

Straightforward calculations show that 2 and 3 are not 5th power residues mod 311 
and that 3123 2 mod 311. Therefore 0 a - 123b mod 5 and 2 - 123 - 123a + 
122bmodS. These yield a b OmodS. But 10/3 is not a 5th power residue 
mod 311; so we have a contradiction. It follows that 5 divides the class number of 
the cyclic cubic field corresponding to m = 256. Note that the advantage of the 
present method is that we obtain three equations mod p instead of two, since we did 
not take p to be a divisor of x - p. 

3. Elliptic Curves and the 2-Part of the Class Group. We now relate the 2-part of 
the class group of the simplest cubic fields to elliptic curves. This reinterprets and 
extends a method of Harvey Cohn for producing cyclic cubic fields of even class 
number. 

Consider the elliptic curve E defined over Q by 

y2 = X3 + mX2 - (m + 3)X + 1. 

For simplicity, we assume 

D = M2 + 3m + 9 is square-free. 

The j-invariant of E is 256D and the conductor is 16D2 if m is even, 8D2 if 
m- 1 mod 4, and 4D2 if =- 3 mod 4. The real points of E are as in Figure 1. 

Note that the right-hand part E of the real curve is the connected component of 
the identity and the sum of two points of E - E lies in E. Let E(Q) denote the 
group of rational points of E. Mordell's Theorem states that it is a finitely generated 
abelian group. Let rank(E(Q)) denote its rank over Z, and let III2 denote the 
2-torsion of the Tate-Shafarevich group (defined below). 

Let C be the ideal class group of the cubic field K and C2 = {x E CIx2 = 1}. 
The 2-rank (rk2) will denote its dimension as a Z/2Z-vector space. 

THEOREM 1. rank(E(Q)) < 1 + rk 2(C2). In fact, there is an exact sequence 

1 -* E?(Q)/2E(Q) -* C2 -*III2 1. 

Proof. The 2-torsion on E consists of the points (p,O), (p',O), (p",O), none of 
which is rational. Therefore rank(E(Q)) = rk2(E(Q)/2E(Q)). Since (0, 1) G E(Q) 
- E?(Q), it follows that rk2(E(Q)/2E(Q)) = 1 + rk2(E0(Q)/2E(Q)). Therefore 
the inequality follows from the exact sequence. 

The exact sequence follows from a standard argument involving a 2-descent. The 
middle term above is known to be related to C2 (see [2], [6]). The main point is that 
for the present family of curves it is exactly C2. We sketch the details. 
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FIGURE 1 

For each rational prime p < x, let Qp denote the completion of Q at p. If p does 
not split in the cubic field K, let Kp denote the completion of K at the prime above 
p and define the homomorphism 

Xp: E(Qp) _ KP/(KX)2 (x, y) x-* X - p. 

If p splits, let 

X : (Q) (QX/(QX)2)' 

(x, y) (x - p, x - p" x - ), X P p, p, p", 

(p,O) (z, P - PI P - P ) 

where z is chosen so that z(p - pl)(p - p") E (KX)2. One defines Xp(p',O) and 
X (p", 0) similarly. Let S2, the Selmer group, be the subgroup of elements of 
KX/(KKX)2 which are in the image of Xp for all p (K embeds into Kp (p nonsplit) 
as usual, and into Qp (p split) via the three Galois conjugates). The Tate-Shafare- 
vich group III 2 is defined by the exactness of the sequence 

0 -* E(Q)/2E(Q) S2 1H 2 3 0. 

We first compute S2. Let a E Kx represent an element of S2, so a E Im XP for all 
p. If p is not split in K, then a = (x - p)f32 for some /3 E KPx and (x, y) E E(Qp). 
Since x - p, x - p', x - p" are Galois conjugates, they all have the same p-adic 
valuation and their product is y2, so x -p has even valuation in Kp. Therefore a 
has even valuation in Kp. Now suppose p splits in K. Letting a', a" denote the 
conjugates of a over Q, we have 

(aa',a") = ((X - p)32, (X-p)322 (X - p,)322) 



CLASS NUMBERS OF THE SIMPLEST CUBIC FIELDS 377 

for some 3, GE Qp and (x, y) E E(Qp). If x - p and x - p' or x - p" have positive 
valuation, then so does p - p' or p - p", hence p divides D = m2 + 3m + 9. Since 
D is assumed to be square-free, p ramifies by Proposition 1. Contradiction. If only 
x - p has positive valuation, it must be even. If x - p has negative valuation, so do 
x - p' and x - p", and all valuations are the same, hence even. Therefore, a must 
have even valuation at all primes, so the ideal (a) is the square of an ideal: (a) = I2. 
If I is principal, then a = 43l2 for some 3 Ee Kx and some unit E. But a E Im X. 
Since x - p > x - p' > x - p" and the product is y2 > 0, we must have the signs 
of a, a', a" be +, +, + or +, -, -. Therefore E, E', E" also have these two 
possibilities for signs. Since p, p', p" have signs -, +, ?, we find that either E or 
- pe is totally positive, hence a square. Therefore, if I is principal, either a or - pa 
is a square, so we have an exact sequence 

1 -* (1,p } (KX)2/(KX)2 _* S2 C* C2. 

We now show that the last map is surjective. Suppose I is an ideal with j2 = (a) 
for some a E KX. We may change a by a unit, if necessary, and assume it is totally 
positive. Then a mod (KX)2 is clearly equal to X,,(x, y) for any x > p" and suitable 
y. The following two lemmas will be useful for treating the finite primes. 

LEMMA. Let L be a number field in which 2 is inert and let a E L be relatively prime 
to 2. Then, L(Va )/L is unramified at the prime above 2 if and only if a is congruent 
to a square mod 4. This extension is unramified at the other finite primes of L if and 
only if the (fractional) ideal (a) is the square of an ideal of K. If K is totally real, 
then the extension is unramified at the infinite primes if and only if a is totally positive. 

Proof. This is a well-known result. For a "proof" see [13, Exercises 9.1-9.3]. 

LEMMA. Let x E KX be relatively prime to 2. Then there exists a unit E of K such 
that ex is congruent to a square mod 4. 

Proof. Since 2 is inert in K/Q (see [10]), there are 56 residue classes mod 4 
relatively prime to 2. The units generate, modulo squares, the classes +1, ? p, 
+ (1 - p), ? (p - p2). The group of square residue classes mod 4 may be calculated 
explicitly. For example, if m 3 mod 4, then the nonzero squares mod 4 are 1, 
3 + p + 3p2, p2, 1 + p + 2p2, p + p2, 1 + 2p + p2, 2 + 3p. It is found that there is 
only the trivial intersection with the above set of units. Therefore, the units times the 
squares yield all 56 residue classes. This proves the lemma. 

By the first lemma, K(Fa)/K is unramified at all primes, finite and infinite, 
except possibly at 2. By the second lemma, we can choose E so that K( ra )/K is 
unramified at 2. This extension is also unramified at the other finite primes. Since 
the narrow and wide class numbers are equal, class field theory implies that the 
extension must be unramified at the infinite primes, so Ea is totally positive. Since a 
is totally positive, so is E, hence - is a square. Therefore K(Fa )/K is unramified 
everywhere. 

If p is inert in K/Q, then (p) is a principal prime ideal of K, so it splits 
completely in the unramified extension K(Fa)/K, by class field theory. Therefore 
a E (Kx )2. In particular, a E Im X. 
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If p ramifies in K/Q, then p3 = (p), where p is the prime above p. Therefore, 
the ideal class of p is of order 1 or 3, so p splits completely in an unramified 
extension of degree 2. Therefore a E (Kp )2 and a E Im X1. 

Finally, suppose p splits in K/Q. Then the 2-torsion points of E are rational over 

Q , so E(Qp)/2E(Qp) contains (Z/2Z)2 (use the reduction mod p), and it injects 
into (QpX/(QX)2)3. Since p does not divide D, only one of the x - p, x - p 
x - p" can be divisible by p when embedded in Qp, and it must therefore have even 
valuation. (If p is in the denominator of x, then again it is easy to see we get even 
valuation.) Hence we can map into the group represented by units, (Z /(Z )2)3. If 

(a, b, c) is in the image, we also have abc E (Z )2, so this characterizes the image, 
since we have now restricted enough to get (Z/2Z)2. Since (a) = I2, (a, a', a") E 

(Qp/(QX )2)3 can be represented by an element of (ZX/(ZX)2)3. Also, (aa'a") = 

(Norm I)2, so aa'a" = en2 for some unit ? and some n. Since a is assumed to be 

totally positive, so is E. Hence ? is a square. It follows that aa'a" is a square, so 

(a, a',a") E- Im Xp. 
We have now shown that a e Im Xp for all p, and hence the above map S2 -- C2 

is surJective. 
Now consider the exact sequence 

1 -- E(Q)/2E(Q) -_ S2 -*1112 

Note that the point (0, 1) E E(Q) - E?(Q) maps to -p E S2. Therefore, if we 
replace E(Q) by E?(Q) and S2 by C2, we obtain 

1 --* E?(Q)/2E(Q) -* C2 - 2 >i 1 

as desired. This completes the proof. 
The Galois structure of C2 shows that it must have even rank [13, p. 1871. If the 

2-primary part of III is finite, then the existence of a nondegenerate skew-symmetric 
pairing shows that L112 has even 2-rank. Therefore E?(Q)/2E(Q) should have even 
2-rank. It follows then that E(Q)/2E(Q) has odd 2-rank, hence E(Q) has odd rank, 
at least under the assumption that III is finite. 

A result similar to that of the theorem, but phrased without elliptic curves, 
was proved by H. Cohn [4]. However, he worked only with integral points on 

E(Q) - E?(Q), hence he was unable to explain why the field generated by 

f(X) = X3 + 136X2 - 139X + 1 

has even class number (h = 100), since there are no integral points other than 

(0, ? 1) on E(Q) - E0(Q). In the present setting we observe that (33/4, 745/8) is a 
rational point. Proposition 4 will show that this point is not in 2E(Q). It follows 
easily that E(Q) has rank at least 2, so the class number must be even. 

However, it should be mentioned that Cohn actually worked with the number 
- p(x - p). This corresponds to the image of (0,1) + (x, y) under X. If (x, y) E 

E(Q) - E?(Q), then this point is in E?(Q), so in fact he was working on E?(Q). 

4. Quartic Fields. We now derive a criterion for determining whether or not a 

point in E(Q) is in 2E(Q). 

PROPOSITION 4. Let f(X) E Q[ X] be a cubic polynomial with distinct roots and let 

E be the elliptic curve y2 = f(X). Let (d, e) E E(Q) and let 

f (X + d) = aX3 + bX2 + cX + e2 
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with a, b, c E Q. Then (d, e) E 2E(Q) if and only if 

q(X) = X4- 2bX2 - 8aeX + b2 - 4ac 

has a rational root. 

Proof. Let 2(xo, yo) = (d, e), so there is a line Y = m(X - d) - e through 
(d,-e) tangent to Y2=f(X) at (x0,yo). From (m(X-d)-e)2=f(X) we 
obtain 

(mX- e)2 =f(X+ d) = aX3 + bX2 + cX+ e2 

for X = x0 - d, x0 - d, 0. So we have (M2 - b)/a = 2(xo - d), hence 

x0 =y2 (m2- b) + d and Yo = y ((m2-b)-e. 

Since the line is tangent at (xo, yo), we have 

2yVm = 3a(xo - d)2 + 2b(xo - d) + c, 

which becomes 
0 = m4 -2bm2 - 8aem + b2 - 4ac = q(m). 

The four roots m of this equation correspond to the four solutions of 2(xo, yo) = 

(d, e). Note that Q(xo, yo) = Q(m), so there exists a solution (xo, yo) E E(Q) if 

and only if q( X) has a rational root. 
Remarks. The polynomial q( X) arises naturally in other ways, at least in the case 

a = 1. First, the quartic curve y2 = q(X) is birationally equivalent to y2 = f (X) [1, 
p. 483]. Second, the resolvent of q(X) (in the sense of Weber [14, p. 1361) is 
- 64f((- X/4) + d), so q(X) is essentially the "anti-resolvent" of f(X + d). 

A theorem of Heilbronn [7] states that if the class group C of the cyclic cubic field 
K has t elements of order exactly 2, then there are precisely t/3 sets of conjugate 
quartic fields with discriminant equal to that of K and whose Galois closures 
contain K. Shanks has pointed out that the "anti-resolvent" q(X) allows us to find 
such fields. Using the above proposition, we can make this more precise via the 
theory of elliptic curves. 

Assume I112 = 0, SO E0(Q)/2E(Q) - C2. Then every ideal class of order 2 comes 
from a point of E0(Q). Let I represent such a class, with j2 = (d - p) for some 
(d, e) E E(Q). The point (d, e) gives rise to the quartic polynomial q(X) above. As 
noted in the proof of Proposition 4, a root m of q( X) generates the same field as the 
coordinates (xo, yo) of some square root of (d, e). So if (d, e) (dl, el) mod 2E(Q), 
then the roots of the polynomials q(X) and ql(X) yield the same fields. 

Let F be the splitting field of q(X). Since F contains the coordinates of all 
solutions of 2(x, y) = (d, e), it must contain the points of order 2, namely (0, p), 
(0, p'), (0, p"). So F D K. If F = K, then q(X) is reducible. It cannot have an 
irreducible quadratic factor, since such a factor would not split in the cubic field K. 
Hence q( X) must have a linear factor, so (d, e) E 2E(Q) by Proposition 4. Now 
suppose F + K. Since f( X) is essentially the resolvent of q( X), the discriminants of 
f and q differ by a square. Therefore the discriminants of K and a quartic field, call 
it K4, associated with q(X), differ by a square. But K is a cyclic cubic field, hence 
has square discriminant. So K4 and q(X) have square discriminants. Therefore 
Gal(F/Q) is a subgroup of A4. Since A4 has no subgroups of order 6, we must have 
Gal(F/Q) A4, 
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We have shown that a point (d, e) E E(Q) - 2E(Q) yields a quartic field whose 
Galois closure F contains K and has Galois group A4. But we also need to know 
whether or not the discriminant of the quartic field equals that of K. If L is any 
field containing K, there is an injection 

E(L)/2E(L) - (Lj(Lx (xy) 3-) (x - p,x - p',x - p") 

(if x = p, p', p", make modifications, as in the definition of X for p split in the 
proof of Theorem 1). The smallest field containing K and the coordinates of +(d, e) 
is the smallest extension field in which d - p, d - p', and d - p" are all squares, 
namely K(Vd - p, jd - p'). (We can omit d - p" since it differs from the product 

of the other two by a square.) So F = K(Vd - p, rd - p'). As shown in the proof 
of Theorem 1, if (d, e) E E?(Q), then K(Vd- p )/K is unramified, hence so is 
K( d - p' )/K. Therefore F/K is unramified. It follows as in Heilbronn's paper, 
that the discriminant of each of the four quartic subfields of F has discriminant 
equal to that of K. 

If (d - p) = j2 for some ideal I of K, then (d - pt) = (J')2. Under the assump- 
tion 112 = 0, there is an ideal J = (/)I' in the same class as I' and a point 
(d', e') e E?(Q) with (d' - p) = J2 (how to find this point remains a mystery), so 
d - p = _/32(d - p') for some unit c. Since (d, e), (d', e') E E?(Q), d - p' and 
d' - p are totally positive. Therefore c is totally positive, hence a square. So 

K(V d '- p) = K(d - p' ). Similarly, there is a point (d ", e") = (d, e) + (d', e') 

with K(rd" - p) = K(rd - p" ). Corresponding to F there are thus three points 
(actually, cosets in E?(Q)/2E(Q)) such that F is the field obtained by adjoining the 
coordinates of all the square roots of any of these points, and these three points 
correspond to an orbit of Gal(K/Q) in C2. 

Suppose (x, y) E E(Q) is also such that the coordinates of 4(x, y) lie in F. It is 
easy to see that Gal(F/K) acts on '(x, y) in the same way as on {(d, e), 1(d', e'), 
or 1 (d", e"); for definiteness, assume it is +(d, e). So (x, y) differs from (d, e) by 
an element of 2E(K). But, as shown above, the square root of an element of E(Q) is 
controlled by the fourth-degree polynomial q(X). It follows that if a rational point 
has a square root in E(K), then it has one in E(Q). Therefore (x, y) (d, e) 
mod 2E(Q), so F corresponds to exactly three cosets of E?(Q)/2E(Q), hence to 
three elements of C2. This agrees with the t/3 of Heilbronn's result. 

Now suppose (d, e) e E(Q) - E?(Q). Since d - p is not totally positive, 

K(Vd - p )/K is ramified at an infinite prime (in fact, at two of them). As before, 
this extension is unramified at all finite primes not above 2. If it were also 
unramified at 2, then it would be unramified at all finite primes but ramified at an 
infinite prime, which is impossible, since the narrow and wide class numbers are 
equal. Therefore K(Vd - p )/K is ramified at 2. We can replace d - p by /B = 
g2(d - p), where g2 is the exact denominator of d. If 2 divided ,B then, since 
{1, p, p2 } is an integral basis for K, both g2d and g2 would be even. But then g2 

would not be the exact denominator of d. So ,B is prime to 2. Since K(y/j)/K is 
wildly ramified at 2, the relative discriminant is divisible by 4 [3, p. 211. But 

Norm(2r/7) = - 4/3, so the discriminant divides 4/3. Therefore it is exactly 4, which 
implies that the absolute discriminant of K(V/j8) = K(Vd - p) is 64 times the 
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square of the discriminant of K. It follows by a calculation with Artin L-functions, 
as in [7], that (5)g6(S) = t3(5)t4(s), hence D6 = D3D4, where ti(s) and Di are the 
Dedekind zeta function and the discriminant of the field of degree i (for i = 4, the 
field is K4, generated by a root of q(X)). Therefore, the discriminant of the quartic 
field K4 is 64 times the discriminant of K. 

Finally, suppose (d', e') e E(Q) - E0(Q) yields the same set of conjugate quartic 
fields as (d, e). If (d', e') # (d, e) mod 2E(Q), then (d ",e") = (d, e) + (d', e') E 

E0(Q) - 2E(Q). Therefore K(Vd" - p)/K is unramified, hence so is its Galois 
closure K(d" - p, Id" - p')/K. But (d - p)(d' - p)(d" - p) E (KX)2 (con- 

sider the map X above), so K(rd " - p ) c K(Td - p, rd' - p ). Since the latter 
field is Galois over Q, we have K(rd " - p, rd " - p') c K( d-p, d' - P), 
hence they are equal, since both have degree 12 (from the above, K(rd" - p )/Q 
cannot be Galois). But the first is unramified over K and the second is ramified at 2. 
Contradiction. So (d', e') (d, e) mod 2E(Q). 

We summarize what we have proved in the following 

THEOREM 2. (a) Let (d, e) denote a point in E(Q), not in 2E(Q), and let q(X) be 
the corresponding quartic polynomial (as in Proposition 4). The set of conjugate quartic 
fields K4 determined by q(X) depends only on the class of (d, e) mod 2E(Q). 

(b) If (d, e) e E?(Q), then K4 has the same discriminant as K. The extension 

K(Vd - p )/K is unramified. 
(c) If (d, e) e E(Q) - E?(Q), then the discriminant of K4 is 64 times the discrimi- 

nant of K. The extension K(Vd - p )/K is ramified at 2 and at two infinite places. 
(d) The splittingfield of q(X) is K(,d - p, jd - p'). 
(e) If I12 = 0, then each orbit (necessarily of length 3) of Gal(K/Q) in C2 

corresponds to three cosets in E?(Q)/2E(Q) with representatives (di, ei), i = 1, 2, 3. 
We have E (di, ei) e 2E(Q). The splitting fields of the corresponding polynomials are 
all equal to K(d1l - p, d-2 - p). This field is also obtained by adjoining to Q the 
coordinates of all solutions of 2(x, y) = (di, ei) for any fixed i. 

(f) If (di, ei) e E(Q) - E?(Q), i = 1, 2, yield the same set of conjugate quartic 
fields, then (d1,el)- (d2,e2) mod 2E(Q). 

COROLLARY. Suppose (d, e) e E?(Q). Let d = a/4sb2 with a E Z, b odd, and 
s >? 0 (ais odd ifs > O). Then 

(i) if m is even, then s > 0 and a I mod 4; 
(ii) if m l mod4 and s = 0, then a 3 mod4; 

(iii) if m 3 mod4 ands = 0, then a 2mod4; 
(iv) if m 1 or 3 mod4 and s > 0, then a l mod4. 

Proof. If (d, e) E E?(Q), then K(Vd- p)/K is unramified at 2, So g2(d - p) is 
a square mod 4, where g2 is the denominator of d. This is true even if (d, e) e 2E(Q), 
since then g2(d - p) is actually a square. If m 0, or 2 (mod 4), then the only 
square residue classes mod4 of the form x + yp are 2 + p (m 0), 1 + p (m 2), 
and 1. Clearly, g2d - g2p cannot be congruent mod 4 to either of the first two 
choices. Therefore it must be the last, so g2 = 4sb2 is even and a = g2d =1 mod 4. 
If m 1 (mod 4), then the only suitable square congruence classes are 1 and 3 + 3p, 
and if m 3 mod 4, they are 1 and 2 + 3p. A similar analysis yields the result. 
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Note that these congruences do not hold for E(Q) - E0(Q): (- 9,17) is a point 
on y2 = X3 + 11X2 - 14X + 1. 

We can now return to the polynomial q(X), which we defined in the discussion 
preceding the theorem. More precisely, we start with the polynomial f(X) = X3 + 
mX2 - (m + 3)X + 1 and a rational point (d, e) on y2 = f(X). Translate to 
obtain 

g(X) = f(X+ d) = X3 +(3d + m)X2 +(3d2 + 2md- m - 3)X+ e2. 

Then - g( - X) is the resolvent cubic of 

Q(X) = X4 -_ (3d + m)X2 + eX+ '(-3d 2- 2md + m2 + 4m + 12). 

This has nonintegral coefficients. But Shanks pointed out that this situation can 
sometimes be remedied by replacing Q( X) by 

Q(X+ 4) = X4 + 2X3 + 4(-3d- m + 3)X2 + 4(-3d- m + 1 + 2e)X 

+61(-3d 2 - 2md + m2 + 2m + 13 + 8e - 6d). 

Suppose m 3 (mod 4) and d E Z, so d 2 (mod 4). Then e must be odd. A 
straightforward calculation shows that all the coefficients of Q(X + 4) are integral, 
so in fact there is a quartic integral polynomial (not just a quartic field) of 
discriminant equal to that of K. Of course, if (d, e) E 2E(Q), then this polynomial 
is reducible, by the theorem. We note that the condition (d, e) e E?(Q) is also 
necessary for the above procedure to work: We need (d, e) e E(Q) in order to make 
the constant term of g(X) a square. If (d, e) e E(Q) - E?(Q), then the correspond- 
ing quartic field has discriminant 64 times the discriminant of f(X), hence cannot 
equal the discriminant of Q(X). So it is impossible to translate Q(X) to obtain an 
integral polynomial. 

5. Examples. We now give some examples. Let m = 11, m2 + 3m + 9 = 163, so 
we are considering the curve 

y2 = X3 + 11X2 - 14X + 1. 

This has (at least) the following integral points: (0, 1) = A, (2, 5) = B, (6,23) = C, 
(-4,13) = -A + B, (-9,17) = A + B, (-12,5) = A - B - C, (-1, 5) = -A + 
C, (26,157) = -2A + C, (30,191) = B - C, (38,265) = 2A, (3170,178789) = 
-2A + B - C, (7502,650255) = -2A - B + 2C. Of course, we can double the 
size of the list by including (0, - 1) = -A, (2, - 5) = - B, etc. Note that the points 
containing A but not 2A are those in E(Q) - E?(Q). The points of E(Q)/2E(Q) 
which we have listed are represented by the point at infinity (which we ignore) and 
(2, 5), (6,23), (0,1), (-4,13), (- 12,5), (-1, 5), (30,191). The corresponding poly- 
nomials q( X) are easily seen to be irreducible, so none of these points is in 2E(Q). 
So A = (0, 1), B = (2,5), and C = (6,23) are independent mod 2E(Q); hence they 
are independent points of E(Q). Therefore E(Q) has rank at least 3. But the class 
number of K is 4 (see [10]), so Theorem 1 implies that E(Q) has rank exactly 3. The 
theorem now implies that K( 2 - p, V6 - p )/K is the Hilbert class field of K. 

Another interesting example is obtained by taking m = 143. Then m2 + 3m + 9 
is the prime 20887. The cubic field K has class number 64, so there is the possibility 
of a large rank for E(Q). We have the following rather long list of integral points 
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(we do not guarantee the list is complete): 

(0,1) = A (2,17) = B 

(-1,17)=A+C-D (6,67)=C 
(-4,53) = -A + D (30,389) = D 

(-28,307)=A + C (90,1369) = E 
(-33,353)= -A + D + E (114,1823)= 2A + C-D 
(-64,577) = -A + B (182,3277) = C - D 
(-81,647) = A + B (290,6031) = B-C 

(-105,659) = A-B-D (846,26603) = -B + C + E 
(-124,557) = A + C + E (854,26963) = B-D-E 

(-144,17) = -A-B-C + D (4182,275027) = B + C + D + E 
(5186,378577) = 2A 

(17342,2293147) = -2A - C + D + E 
(414290,266705281) = -2A + B + C + D + E 

Of course, there are also the above points with the second coordinates negative. Note 
that the second coordinate of E is 372. By Proposition 2, (90 - p) = P. From 
Proposition 4, (90 - p) is not the square of a principal ideal, so K has an ideal class 
of order 4. It is shown in [13, p. 1871 that not only is the 2-rank of the class group 
even, but also the 4-rank, 8-rank, etc. Therefore the class group is either (Z/2Z)2 x 
(Z/4Z)2 or (Z/8Z)2. It is possible to show that A, B, C, D, E are independent 
mod 2E(Q), hence are independent. This can be done via Proposition 4. Therefore 
E(Q) has rank at least 5, so the class group has rank at least 4. Consequently, the 
class group is (Z/2Z)2 x (Z/4Z)2, and E(Q) has rank exactly 5. 

It can be shown (we thank Daniel Shanks for the calculations) that each of the 
following groups of three points corresponds to a set of four conjugate quartic fields: 

B, C - D, B + C + D, 
C, -B + C + E, B + E, 
D, C + E, C + D + E, 
E, B - C + E, B + D, 
B- C, D + E, B + C + D + E. 

(A few of the above points were not listed previously, since they are rational but not 
integral.) This agrees with Heilbronn's theorem since the class group has 15 elements 
of order exactly 2, so there are 15/3 = 5 sets of quartic fields. To get the fields of 
discriminant 64 X (20887)2, consider the point A, and A added to each of the above 
points. This gives us 16 points of E(Q) - E(Q) which are noncongruent mod 2 E(Q). 
By part (f) of the theorem, the corresponding quartic fields are nonconjugate. 

We note that it follows from Theorem 1 that 1112 = 0 in both the above examples. 
Instead of considering the curve E defined by Y2 = f(X), we could also have 

considered y2 = -f(- X). We end up working with the same field, and the above 
analysis also works. But for some unexplained reason this curve does not work as 
well for obtaining information about the class group C2, since III 2 empirically tends 
to be nontrivial in this case. For example, for m = 11, a calculation with the L-series 
for the curve indicates that III should have order 4, hence 1112 should have 2-rank 2. 
Since C2 has rank 2, none of the class group should come from the curve, in contrast 
to the above. 
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For many years, several people have tried to find quadratic fields with large 
3-rank in the class group. A corresponding problem is to find cubic fields with large 
2-rank. This problem may be attacked in the spirit of a paper of Mestre [8]. Let E 
be the curve y2 = X3 + mX2 - (m + 3)X + 1. Choose m so that E mod p has a 
large number of points for all small p. This tends to yield curves with high rank; 
hence the corresponding cubic fields should have large 2-rank, as desired. For 
example, m = 11 is optimal for p = 2, 3,7, 11 and m = 143 is optimal for m = 
2, 3, 5, 11. The choice m = 27038 is optimal for p < 23, p * 13. Mestre's bounds [8] 
indicate that the rank of this curve should be at most 7, hence the cubic field could 
have a class group whose 2-rank is 6. However, it does not seem easy to find rational 
points on this curve. 

Finally, we remark that it is possible to look at Proposition 3 geometrically when 
n > 3. This type of argument has been given by Mestre [9] in a slightly different 
situation. 
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